N	an	ae	

-	
63040	
1 1 2 3 1 4 4	
1 au	

1. Find the values of x that satisfy the inequality $0 \le x + 7 \le 12$.

Answer: _____

2. Rationalize the denominator of the expression $\sqrt{\frac{5x}{3y}}$.

Answer:

3. Solve the following equation $2x^2 - 3x - 9 = 0$.

Answer: _____

4. Use the quadratic formula to solve $2x^2 - 5x - 4 = 0$.

Answer:

5. Simplify the expression $\frac{4x^2 + 16x + 15}{6x^2 + 9x}$.

Auswer:

p.3

6. Find an equation of the line (slope-intercept form) that passes through the points (4,-1) and (-2,4).

Answer:

7. Determine the domain of the function $f(x) = \frac{x}{3x-5}$.

Answer:

8. Let $f(x) = 3\sqrt{2x} + 1$ and $g(x) = x^2 - 2$. Find the rule for the composite function $f \circ g$.

Answer:

9. Find the value of $\lim_{x \to -2} \frac{x+8}{x-1}$.

Answer:

10. Find the value of $\lim_{x\to 0} \frac{x^2 + 6x}{x}$, if it exists.

Answer:

Answer:

12. A ball is thrown straight up into the air so that its height in feet after t seconds is given by $s(t) = 128t - 16t^2$.

a. Find the average velocity of the ball during the time interval [3,3.1].

Answer:

b. Find the instantaneous velocity of the ball at t = 3 seconds.

Answer:

13. Let $f(x) = \frac{1}{2}x^2 + 3x$.

a. Find the slope of the tangent line to the graph of y = f(x) at x = 2.

Answer:

b. Find the equation of the tangent line to the graph of y = f(x) at x = 2.

Answer:

14. Find the derivative of the function $f(x) = \frac{1}{8}x + 1$.

Answer:

15. Find the derivative of the function $f(x) = \sqrt{x} - \frac{1}{x}$.

Answer:

16. Find the derivative of the function $f(x) = \frac{4x^3}{x^2 + 1}$.

Answer:

17. Find the derivative of the function $f(x) = \sqrt{x^2 - 4x}$.

Answer:

18. Let $f(x) = \frac{1}{4}(x^2+2)(2x+3)$. Find the point(s) on the graph of f where the slope of the tangent line is equal to 10.

Answer:

19. Find
$$\frac{dy}{du}$$
, $\frac{du}{dx}$, and $\frac{dy}{dx}$ if $y = u^{-\frac{4}{3}}$ and $u = x^3 - 2x + 1$.

Answer:

20. Find F'(3) if F(x) = f(g(x)) and f(3) = 2, f'(3) = 5, f'(4) = 6, g(3) = 4, and g'(3) = -2.

Answer:

21. Find the differential of the function $f(x) = \frac{3}{x-1}$.

Answer:

22. Find the interval(s) where $f(x) = x^3 + \frac{9}{2}x^2 + 6x - 3$ is increasing and the interval(s) where it is decreasing.

Increasing: _____ Decreasing: _____

23. Find the relative maxima and minima, if any, of $g(x) = 4x - x^4$.

Minima: Maxima:

p.6

24. Find the relative maxima and minima, if any, of $h(t) = t^{\frac{1}{3}} - 3t$.

Minima: Maxima:

For problems 25-27, let $f(x) = \sqrt[3]{x+1}$.

25. Find the interval(s) where f(x) is concave upward.

Answer:

26. Find the interval(s) where f(x) is concave downward.

Answer:

27. Find the x-coordinate(s) of any point(s) of inflection.

Answer: _____

28. Find the horizontal and vertical asymptotes of the graph of $y = \frac{x^2 + 2x + 1}{x^2 - 6x + 8}$.

Horizontal: _____ Vertical: _____

29. Find the absolute maximum and the absolute minimum of $f(x) = x^3 - 3x + 2$ on [-2,4].

Maximum: _____ Minimum:

30. A landlord owns an apartment building. When the rent for each apartment is \$700 per month, all 100 apartments are rented. The landlord estimates that each \$100 increase in the monthly rent will result in 10 apartments becoming vacant with no chance of being rented. What monthly rent amount will maximize the total monthly revenue?

Answer: