\qquad

1. Find the values of \mathbf{x} that satisfy the inequality $0 \leq x+7 \leq 12$.

Answer: \qquad
2. Rationalize the denominator of the expression $\sqrt{\frac{5 x}{3 y}}$.

Answer:
3. Solve the following equation $2 x^{2}-3 x-9=0$.

Answer: \qquad
4. Use the quadratic formula to solve $2 x^{2}-5 x-4=0$.

Answer: \qquad
5. Simplify the expression $\frac{4 x^{2}+16 x+15}{6 x^{2}+9 x}$.

Answer:
6. Find an equation of the line (slope-intercept form) that passes through the points $(4,-1)$ and $(-2,4)$.

Answer: \qquad
7. Determine the domain of the function $f(x)=\frac{x}{3 x-5}$.

Answer: \qquad
8. Let $f(x)=3 \sqrt{2 x}+1$ and $g(x)=x^{2}-2$. Find the rule for the composite function $f \circ g$.

Answer: \qquad
9. Find the value of $\lim _{x \rightarrow-2} \frac{x+8}{x-1}$.

Answer: \qquad
10. Find the value of $\lim _{x \rightarrow 0} \frac{x^{2}+6 x}{x}$, if it exists.

Answer: \qquad
11. Find the value of $\lim _{x \rightarrow 3^{-}} \frac{4-x}{x+3}$, if it exists.

Answer: \qquad
12. A ball is thrown straight up into the air so that its height in feet after \mathbf{t} seconds is given by $s(t)=128 t-16 t^{2}$.
a. Find the average velocity of the ball during the time interval $[3,3.1]$.

Answer: \qquad
b. Find the instantancous velocity of the ball at $t=3$ seconds.

Answer: \qquad
13. Let $f(x)=\frac{1}{2} x^{2}+3 x$.
a. Find the slope of the tangent line to the graph of $y=f(x)$ at $x=2$.

Answer: \qquad
b. Find the equation of the tangent line to the graph of $y=f(x)$ at $x=2$.

Answer: \qquad
14. Find the derivative of the function $f(x)=\frac{1}{8} x+1$.

Answer:

\qquad
15. Find the derivative of the function $f(x)=\sqrt{x}-\frac{1}{x}$.

Answer:

\qquad
16. Find the derivative of the function $f(x)=\frac{4 x^{3}}{x^{2}+1}$.

Answer: \qquad
17. Find the derivative of the function $f(x)=\sqrt{x^{2}-4 x}$.

Answer: \qquad
18. Let $f(x)=\frac{1}{4}\left(x^{2}+2\right)(2 x+3)$. Find the point(s) on the graph of f where the slope of the tangent line is equal to 10.

Answer: \qquad
19. Find $\frac{d y}{d u}, \frac{d u}{d x}$, and $\frac{d y}{d x}$ if $y=u^{-5 / 3}$ and $u=x^{3}-2 x+1$.

Answer:

\qquad
20. Find $F^{\prime}(3)$ if $F(x)=f(g(x))$ and $f(3)=2, f^{\prime}(3)=5, f^{\prime}(4)=6, g(3)=4$, and $g^{\prime}(3)=-2$.

Answer:

\qquad
21. Find the differential of the function $f(x)=\frac{3}{x-1}$.

Answer:
22. Find the interval(s) where $f(x)=x^{3}+\frac{9}{2} x^{2}+6 x-3$ is increasing and the interval(s) where it is decreasing.

Increasing: \qquad Decreasing: \qquad
23. Find the relative maxima and minima, if any, of $g(x)=4 x-x^{4}$.

Maxima: \qquad Minima: \qquad
24. Find the relative maxima and minima, if any, of $h(t)=t^{1 / 3}-3 t$.

Maxima: \qquad Minima: \qquad

For problems 25-27, let $f(x)=\sqrt[3]{x+1}$.
25. Find the interval(s) where $f(x)$ is concave upward.

Answer: \qquad
26. Find the interval(s) where $f(x)$ is concave downward.

Answer:

\qquad
27. Find the x-coordinate(s) of any point(s) of inflection.

Answer: \qquad
28. Find the horizontal and vertical asymptotes of the graph of $y=\frac{x^{2}+2 x+1}{x^{2}-6 x+8}$.
\qquad Vertical: \qquad
29. Find the absolute maximum and the absolute minimum of $f(x)=x^{3}-3 x+2$ on $[-2,4]$.

Maximum: \qquad Minimum: \qquad
30. A landlord owns am apartment building. When the rent for each apartment is $\$ 700$ per month, all 100 apartments are rented. The landlord estimates that each $\$ 100$ increase in the monthly rent will result in 10 apartments becoming vacant with no chance of being rented. What monthly rent amount will maximize the total monthly revenue?

Answer: \qquad

